Asymptotic Expansion Homogenization of Discrete Fine-scale Models with Rotational Degrees of Freedom for the Simulation of Quasi-brittle Materials

نویسندگان

  • Roozbeh Rezakhani
  • Gianluca Cusatis
چکیده

Discrete fine-scale models, in the form of either particle or lattice models, have been formulated successfully to simulate the behavior of quasi-brittle materials whose mechanical behavior is inherently connected to fracture processes occurring in the internal heterogeneous structure. These models tend to be intensive from the computational point of view as they adopt an “a priori” discretization anchored to the major material heterogeneities (e.g. grains in particulate materials and aggregate pieces in cementitious composites) and this hampers their use in the numerical simulations of large systems. In this work, this problem is addressed by formulating a general multiple scale computational framework based on classical asymptotic analysis and that (1) is applicable to any discrete model with rotational degrees of freedom; and (2) gives rise to an equivalent Cosserat continuum. The developed theory is applied to the upscaling of the Lattice Discrete Particle Model (LDPM), a recently formulated discrete model for concrete and other quasi-brittle materials, and the properties of the homogenized model are analyzed thoroughly in both the elastic and inelastic regime. The analysis shows that the homogenized micropolar elastic properties are size-dependent, and they are functions of the RVE size and the size of the material heterogeneity. Furthermore, the analysis of the homogenized inelastic behavior highlights issues associated with the homogenization of fine-scale models featuring strain-softening and the related damage localization. Finally, nonlinear simulations of the RVE behavior subject to curvature components causing bending and torsional effects demonstrates, contrarily to typical Cosserat formulations, a significant coupling between the homogenized stress-strain and couple-curvature constitutive equations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Torsion Analysis of High-Rise Buildings using Quadrilateral Panel Elements with Drilling D.O.F.s

Generally, the finite element method is a powerful procedure for analysis of tall buildings. Yet, it should be noted that there are some problems in the application of many finite elements to the analysis of tall building structures. The presence of artificial flexure and parasitic shear effects in many lower order plane stress and membrane elements, cause the numerical procedure to converge in...

متن کامل

OPTIMAL WIND RESISTANT DESIGN OF TALL BUILDINGS UTILIZING MINE BLAST ALGORITHM

Practical design of tall frame-tube and diagrids are formulated as two discrete optimization problems searching for minimal weight undercodified constraints under gravitational and wind loading due to Iranian codes of practice for steel structures (Part 6 & Part 10). Particular encoding of design vector is proposed to efficiently handle both problems leading to minimal search space. Two types o...

متن کامل

A Review of Peridynamics and its Applications; Part1: The Models based on Peridynamics

Peridynamics is a nonlocal version of the continuum mechanics, in which partial differential equations are replaced by integro-differential ones. Due to not using spatial derivatives of the field variables, it can be applied to problems with discontinuities. In the primary studies, peridynamics has been used to simulate crack propagation in brittle materials. With proving the capabilities of pe...

متن کامل

An Efficient Strain Based Cylindrical Shell Finite Element

The need for compatibility between degrees of freedom of various elements is a major problem encountered in practice during the modeling of complex structures; the problem is generally solved by an additional rotational degree of freedom [1-3]. This present paper investigates possible improvements to the performances of strain based cylindrical shell finite element [4] by introducing an additio...

متن کامل

Tensile damage response from discrete element virtual testing

Depending on the loading conditions on brittle materials, damage can generally not be reduced to a simple scalar. Microcrack orientation affects the stiffness in a preferential direction perpendicular to the crack lips. Taking into account the damage anisotropy in phenomenological models is a possible option, but the identification of the corresponding models with respect to damage anisotropy i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015